
MPI for Python
Release 3.1.5

Lisandro Dalcin

January 01, 2024

Contents

1 Introduction 3
1.1 What is MPI? . 3
1.2 What is Python? . 3
1.3 Related Projects . 4

2 Overview 5
2.1 Communicating Python Objects and Array Data . 5
2.2 Communicators . 5
2.3 Point-to-Point Communications . 6
2.4 Collective Communications . 7
2.5 Support for GPU-aware MPI . 7
2.6 Dynamic Process Management . 8
2.7 One-Sided Communications . 8
2.8 Parallel Input/Output . 9
2.9 Environmental Management . 9

3 Tutorial 10
3.1 Running Python scripts with MPI . 12
3.2 Point-to-Point Communication . 12
3.3 Collective Communication . 13
3.4 MPI-IO . 15
3.5 Dynamic Process Management . 16
3.6 CUDA-aware MPI + Python GPU arrays . 17
3.7 One-Sided Communications . 17
3.8 Wrapping with SWIG . 18
3.9 Wrapping with F2Py . 19

4 mpi4py 20
4.1 Runtime configuration options . 20
4.2 Environment variables . 22
4.3 Miscellaneous functions . 24

5 mpi4py.MPI 25
5.1 Classes . 25
5.2 Functions . 26
5.3 Attributes . 29

1

6 mpi4py.futures 40
6.1 concurrent.futures . 40
6.2 MPIPoolExecutor . 40
6.3 MPICommExecutor . 43
6.4 Command line . 44
6.5 Examples . 44

7 mpi4py.util 46
7.1 mpi4py.util.pkl5 . 46
7.2 mpi4py.util.dtlib . 49

8 mpi4py.run 49
8.1 Interface options . 50

9 Reference 51
9.1 mpi4py.MPI . 51

10 Citation 51

11 Installation 51
11.1 Requirements . 51
11.2 Using pip . 52
11.3 Using distutils . 52
11.4 Testing . 54

12 Appendix 54
12.1 MPI-enabled Python interpreter . 54
12.2 Building MPI from sources . 55

References 56

Python Module Index 58

Index 59

Abstract

This document describes the MPI for Python package. MPI for Python provides Python bindings for the Message
Passing Interface (MPI) standard, allowing Python applications to exploit multiple processors on workstations, clus-
ters and supercomputers.

This package builds on the MPI specification and provides an object oriented interface resembling the MPI-2 C++
bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communication
of any picklable Python object, as well as efficient communication of Python objects exposing the Python buffer
interface (e.g. NumPy arrays and builtin bytes/array/memoryview objects).

2

1 Introduction

Over the last years, high performance computing has become an affordable resource to many more researchers in the
scientific community than ever before. The conjunction of quality open source software and commodity hardware
strongly influenced the now widespread popularity of Beowulf class clusters and cluster of workstations.

Among many parallel computational models, message-passing has proven to be an effective one. This paradigm is
specially suited for (but not limited to) distributed memory architectures and is used in today’s most demanding sci-
entific and engineering application related to modeling, simulation, design, and signal processing. However, portable
message-passing parallel programming used to be a nightmare in the past because of the many incompatible options
developers were faced to. Fortunately, this situation definitely changed after the MPI Forum released its standard spec-
ification.

High performance computing is traditionally associated with software development using compiled languages. How-
ever, in typical applications programs, only a small part of the code is time-critical enough to require the efficiency of
compiled languages. The rest of the code is generally related to memory management, error handling, input/output,
and user interaction, and those are usually the most error prone and time-consuming lines of code to write and debug
in the whole development process. Interpreted high-level languages can be really advantageous for this kind of tasks.

For implementing general-purpose numerical computations, MATLAB1 is the dominant interpreted programming lan-
guage. In the open source side, Octave and Scilab are well known, freely distributed software packages providing
compatibility with the MATLAB language. In this work, we present MPI for Python, a new package enabling applica-
tions to exploit multiple processors using standard MPI “look and feel” in Python scripts.

1.1 What is MPI?

MPI, [mpi-using] [mpi-ref] the Message Passing Interface, is a standardized and portable message-passing system
designed to function on a wide variety of parallel computers. The standard defines the syntax and semantics of library
routines and allows users to write portable programs in the main scientific programming languages (Fortran, C, or
C++).

Since its release, the MPI specification [mpi-std1] [mpi-std2] has become the leading standard for message-passing
libraries for parallel computers. Implementations are available from vendors of high-performance computers and from
well known open source projects like MPICH [mpi-mpich] and Open MPI [mpi-openmpi].

1.2 What is Python?

Python is a modern, easy to learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object-oriented programming with dynamic typing and dynamic binding. It supports
modules and packages, which encourages program modularity and code reuse. Python’s elegant syntax, together with
its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed. It is easily extended with new functions and data types implemented in
C or C++. Python is also suitable as an extension language for customizable applications.

Python is an ideal candidate for writing the higher-level parts of large-scale scientific applications [Hinsen97] and
driving simulations in parallel architectures [Beazley97] like clusters of PC’s or SMP’s. Python codes are quickly
developed, easily maintained, and can achieve a high degree of integration with other libraries written in compiled
languages.

1 MATLAB is a registered trademark of The MathWorks, Inc.

3

https://www.beowulf.org/
https://www.mpi-forum.org/
https://www.mpich.org/
https://www.open-mpi.org/
https://www.python.org/

1.3 Related Projects

As this work started and evolved, some ideas were borrowed from well known MPI and Python related open source
projects from the Internet.

• OOMPI

– It has no relation with Python, but is an excellent object oriented approach to MPI.

– It is a C++ class library specification layered on top of the C bindings that encapsulates MPI into a functional
class hierarchy.

– It provides a flexible and intuitive interface by adding some abstractions, like Ports and Messages, which
enrich and simplify the syntax.

• Pypar

– Its interface is rather minimal. There is no support for communicators or process topologies.

– It does not require the Python interpreter to be modified or recompiled, but does not permit interactive
parallel runs.

– General (picklable) Python objects of any type can be communicated. There is good support for numeric
arrays, practically full MPI bandwidth can be achieved.

• pyMPI

– It rebuilds the Python interpreter providing a built-in module for message passing. It does permit interactive
parallel runs, which are useful for learning and debugging.

– It provides an interface suitable for basic parallel programing. There is not full support for defining new
communicators or process topologies.

– General (picklable) Python objects can be messaged between processors. There is not support for numeric
arrays.

• Scientific Python

– It provides a collection of Python modules that are useful for scientific computing.

– There is an interface to MPI and BSP (Bulk Synchronous Parallel programming).

– The interface is simple but incomplete and does not resemble the MPI specification. There is support for
numeric arrays.

Additionally, we would like to mention some available tools for scientific computing and software development with
Python.

• NumPy is a package that provides array manipulation and computational capabilities similar to those found
in IDL, MATLAB, or Octave. Using NumPy, it is possible to write many efficient numerical data processing
applications directly in Python without using any C, C++ or Fortran code.

• SciPy is an open source library of scientific tools for Python, gathering a variety of high level science and en-
gineering modules together as a single package. It includes modules for graphics and plotting, optimization,
integration, special functions, signal and image processing, genetic algorithms, ODE solvers, and others.

• Cython is a language that makes writing C extensions for the Python language as easy as Python itself. The
Cython language is very close to the Python language, but Cython additionally supports calling C functions and
declaring C types on variables and class attributes. This allows the compiler to generate very efficient C code
from Cython code. This makes Cython the ideal language for wrapping for external C libraries, and for fast C
modules that speed up the execution of Python code.

4

https://web.archive.org/web/20100614170656/http://www.osl.iu.edu/research/oompi/overview.php
https://github.com/daleroberts/pypar
https://sourceforge.net/projects/pympi/
http://dirac.cnrs-orleans.fr/ScientificPython.html
https://numpy.org/
https://scipy.org/
https://cython.org/

• SWIG is a software development tool that connects programs written in C and C++ with a variety of high-
level programming languages like Perl, Tcl/Tk, Ruby and Python. Issuing header files to SWIG is the simplest
approach to interfacing C/C++ libraries from a Python module.

2 Overview

MPI for Python provides an object oriented approach to message passing which grounds on the standard MPI-2 C++
bindings. The interface was designed with focus in translating MPI syntax and semantics of standard MPI-2 bindings
for C++ to Python. Any user of the standard C/C++ MPI bindings should be able to use this module without need of
learning a new interface.

2.1 Communicating Python Objects and Array Data

The Python standard library supports different mechanisms for data persistence. Many of them rely on disk storage,
but pickling and marshaling can also work with memory buffers.

The pickle modules provide user-extensible facilities to serialize general Python objects using ASCII or binary for-
mats. The marshal module provides facilities to serialize built-in Python objects using a binary format specific to
Python, but independent of machine architecture issues.

MPI for Python can communicate any built-in or user-defined Python object taking advantage of the features provided
by the picklemodule. These facilities will be routinely used to build binary representations of objects to communicate
(at sending processes), and restoring them back (at receiving processes).

Although simple and general, the serialization approach (i.e., pickling and unpickling) previously discussed imposes
important overheads in memory as well as processor usage, especially in the scenario of objects with large memory
footprints being communicated. Pickling general Python objects, ranging from primitive or container built-in types to
user-defined classes, necessarily requires computer resources. Processing is also needed for dispatching the appropriate
serialization method (that depends on the type of the object) and doing the actual packing. Additional memory is always
needed, and if its total amount is not known a priori, many reallocations can occur. Indeed, in the case of large numeric
arrays, this is certainly unacceptable and precludes communication of objects occupying half or more of the available
memory resources.

MPI for Python supports direct communication of any object exporting the single-segment buffer interface. This inter-
face is a standard Python mechanism provided by some types (e.g., strings and numeric arrays), allowing access in the C
side to a contiguous memory buffer (i.e., address and length) containing the relevant data. This feature, in conjunction
with the capability of constructing user-defined MPI datatypes describing complicated memory layouts, enables the
implementation of many algorithms involving multidimensional numeric arrays (e.g., image processing, fast Fourier
transforms, finite difference schemes on structured Cartesian grids) directly in Python, with negligible overhead, and
almost as fast as compiled Fortran, C, or C++ codes.

2.2 Communicators

In MPI for Python, Comm is the base class of communicators. The Intracomm and Intercomm classes are sublcasses
of the Comm class. The Comm.Is_inter method (and Comm.Is_intra, provided for convenience but not part of the
MPI specification) is defined for communicator objects and can be used to determine the particular communicator class.

The two predefined intracommunicator instances are available: COMM_SELF and COMM_WORLD. From them, new com-
municators can be created as needed.

The number of processes in a communicator and the calling process rank can be respectively obtained with methods
Comm.Get_size and Comm.Get_rank. The associated process group can be retrieved from a communicator by calling
the Comm.Get_group method, which returns an instance of the Group class. Set operations with Group objects like

5

http://www.swig.org/

like Group.Union, Group.Intersection and Group.Difference are fully supported, as well as the creation of
new communicators from these groups using Comm.Create and Comm.Create_group.

New communicator instances can be obtained with the Comm.Clone, Comm.Dup and Comm.Split methods, as well
methods Intracomm.Create_intercomm and Intercomm.Merge.

Virtual topologies (Cartcomm, Graphcomm and Distgraphcomm classes, which are specializations of the Intracomm
class) are fully supported. New instances can be obtained from intracommunicator instances with factory methods
Intracomm.Create_cart and Intracomm.Create_graph.

2.3 Point-to-Point Communications

Point to point communication is a fundamental capability of message passing systems. This mechanism enables the
transmission of data between a pair of processes, one side sending, the other receiving.

MPI provides a set of send and receive functions allowing the communication of typed data with an associated tag.
The type information enables the conversion of data representation from one architecture to another in the case of
heterogeneous computing environments; additionally, it allows the representation of non-contiguous data layouts and
user-defined datatypes, thus avoiding the overhead of (otherwise unavoidable) packing/unpacking operations. The tag
information allows selectivity of messages at the receiving end.

Blocking Communications

MPI provides basic send and receive functions that are blocking. These functions block the caller until the data buffers
involved in the communication can be safely reused by the application program.

In MPI for Python, the Comm.Send, Comm.Recv and Comm.Sendrecv methods of communicator objects provide sup-
port for blocking point-to-point communications within Intracomm and Intercomm instances. These methods can
communicate memory buffers. The variants Comm.send , Comm.recv and Comm.sendrecv can communicate general
Python objects.

Nonblocking Communications

On many systems, performance can be significantly increased by overlapping communication and computation. This
is particularly true on systems where communication can be executed autonomously by an intelligent, dedicated com-
munication controller.

MPI provides nonblocking send and receive functions. They allow the possible overlap of communication and computa-
tion. Non-blocking communication always come in two parts: posting functions, which begin the requested operation;
and test-for-completion functions, which allow to discover whether the requested operation has completed.

In MPI for Python, the Comm.Isend and Comm.Irecvmethods initiate send and receive operations, respectively. These
methods return a Request instance, uniquely identifying the started operation. Its completion can be managed using the
Request.Test, Request.Wait and Request.Cancelmethods. The management of Request objects and associated
memory buffers involved in communication requires a careful, rather low-level coordination. Users must ensure that
objects exposing their memory buffers are not accessed at the Python level while they are involved in nonblocking
message-passing operations.

6

Persistent Communications

Often a communication with the same argument list is repeatedly executed within an inner loop. In such cases, commu-
nication can be further optimized by using persistent communication, a particular case of nonblocking communication
allowing the reduction of the overhead between processes and communication controllers. Furthermore , this kind of
optimization can also alleviate the extra call overheads associated to interpreted, dynamic languages like Python.

In MPI for Python, the Comm.Send_init and Comm.Recv_init methods create persistent requests for a send and
receive operation, respectively. These methods return an instance of the Prequest class, a subclass of the Request
class. The actual communication can be effectively started using the Prequest.Start method, and its completion
can be managed as previously described.

2.4 Collective Communications

Collective communications allow the transmittal of data between multiple processes of a group simultaneously. The
syntax and semantics of collective functions is consistent with point-to-point communication. Collective functions
communicate typed data, but messages are not paired with an associated tag; selectivity of messages is implied in the
calling order. Additionally, collective functions come in blocking versions only.

The more commonly used collective communication operations are the following.

• Barrier synchronization across all group members.

• Global communication functions

– Broadcast data from one member to all members of a group.

– Gather data from all members to one member of a group.

– Scatter data from one member to all members of a group.

• Global reduction operations such as sum, maximum, minimum, etc.

In MPI for Python, the Comm.Bcast, Comm.Scatter, Comm.Gather, Comm.Allgather, Comm.Alltoall methods
provide support for collective communications of memory buffers. The lower-case variants Comm.bcast, Comm.
scatter, Comm.gather, Comm.allgather and Comm.alltoall can communicate general Python objects. The vec-
tor variants (which can communicate different amounts of data to each process) Comm.Scatterv, Comm.Gatherv,
Comm.Allgatherv, Comm.Alltoallv and Comm.Alltoallw are also supported, they can only communicate objects
exposing memory buffers.

Global reducion operations on memory buffers are accessible through the Comm.Reduce, Comm.Reduce_scatter,
Comm.Allreduce, Intracomm.Scan and Intracomm.Exscan methods. The lower-case variants Comm.reduce,
Comm.allreduce, Intracomm.scan and Intracomm.exscan can communicate general Python objects; however,
the actual required reduction computations are performed sequentially at some process. All the predefined (i.e., SUM,
PROD, MAX, etc.) reduction operations can be applied.

2.5 Support for GPU-aware MPI

Several MPI implementations, including Open MPI and MVAPICH, support passing GPU pointers to MPI calls to
avoid explict data movement between the host and the device. On the Python side, GPU arrays have been implemented
by many libraries that need GPU computation, such as CuPy, Numba, PyTorch, and PyArrow. In order to increase
library interoperability, two kinds of zero-copy data exchange protocols are defined and agreed upon: DLPack and
CUDA Array Interface. For example, a CuPy array can be passed to a Numba CUDA-jit kernel.

MPI for Python provides an experimental support for GPU-aware MPI. This feature requires:

1. mpi4py is built against a GPU-aware MPI library.

2. The Python GPU arrays are compliant with either of the protocols.

7

https://data-apis.org/array-api/latest/design_topics/data_interchange.html
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html

See the Tutorial section for further information. We note that

• Whether or not a MPI call can work for GPU arrays depends on the underlying MPI implementation, not on
mpi4py.

• This support is currently experimental and subject to change in the future.

2.6 Dynamic Process Management

In the context of the MPI-1 specification, a parallel application is static; that is, no processes can be added to or
deleted from a running application after it has been started. Fortunately, this limitation was addressed in MPI-2. The
new specification added a process management model providing a basic interface between an application and external
resources and process managers.

This MPI-2 extension can be really useful, especially for sequential applications built on top of parallel modules,
or parallel applications with a client/server model. The MPI-2 process model provides a mechanism to create new
processes and establish communication between them and the existing MPI application. It also provides mechanisms
to establish communication between two existing MPI applications, even when one did not start the other.

In MPI for Python, new independent process groups can be created by calling the Intracomm.Spawn method within
an intracommunicator. This call returns a new intercommunicator (i.e., an Intercomm instance) at the parent process
group. The child process group can retrieve the matching intercommunicator by calling the Comm.Get_parent class
method. At each side, the new intercommunicator can be used to perform point to point and collective communications
between the parent and child groups of processes.

Alternatively, disjoint groups of processes can establish communication using a client/server approach. Any server ap-
plication must first call the Open_port function to open a port and the Publish_name function to publish a provided
service, and next call the Intracomm.Acceptmethod. Any client applications can first find a published service by call-
ing the Lookup_name function, which returns the port where a server can be contacted; and next call the Intracomm.
Connect method. Both Intracomm.Accept and Intracomm.Connect methods return an Intercomm instance.
When connection between client/server processes is no longer needed, all of them must cooperatively call the Comm.
Disconnect method. Additionally, server applications should release resources by calling the Unpublish_name and
Close_port functions.

2.7 One-Sided Communications

One-sided communications (also called Remote Memory Access, RMA) supplements the traditional two-sided,
send/receive based MPI communication model with a one-sided, put/get based interface. One-sided communication
that can take advantage of the capabilities of highly specialized network hardware. Additionally, this extension lowers
latency and software overhead in applications written using a shared-memory-like paradigm.

The MPI specification revolves around the use of objects called windows; they intuitively specify regions of a process’s
memory that have been made available for remote read and write operations. The published memory blocks can be
accessed through three functions for put (remote send), get (remote write), and accumulate (remote update or reduc-
tion) data items. A much larger number of functions support different synchronization styles; the semantics of these
synchronization operations are fairly complex.

In MPI for Python, one-sided operations are available by using instances of the Win class. New window objects are
created by calling the Win.Create method at all processes within a communicator and specifying a memory buffer .
When a window instance is no longer needed, the Win.Free method should be called.

The three one-sided MPI operations for remote write, read and reduction are available through calling the methods
Win.Put, Win.Get, and Win.Accumulate respectively within a Win instance. These methods need an integer rank
identifying the target process and an integer offset relative the base address of the remote memory block being accessed.

The one-sided operations read, write, and reduction are implicitly nonblocking, and must be synchronized by using two
primary modes. Active target synchronization requires the origin process to call the Win.Start and Win.Complete

8

methods at the origin process, and target process cooperates by calling the Win.Post and Win.Wait methods. There
is also a collective variant provided by the Win.Fencemethod. Passive target synchronization is more lenient, only the
origin process calls the Win.Lock and Win.Unlock methods. Locks are used to protect remote accesses to the locked
remote window and to protect local load/store accesses to a locked local window.

2.8 Parallel Input/Output

The POSIX standard provides a model of a widely portable file system. However, the optimization needed for parallel
input/output cannot be achieved with this generic interface. In order to ensure efficiency and scalability, the underlying
parallel input/output system must provide a high-level interface supporting partitioning of file data among processes
and a collective interface supporting complete transfers of global data structures between process memories and files.
Additionally, further efficiencies can be gained via support for asynchronous input/output, strided accesses to data, and
control over physical file layout on storage devices. This scenario motivated the inclusion in the MPI-2 standard of a
custom interface in order to support more elaborated parallel input/output operations.

The MPI specification for parallel input/output revolves around the use objects called files. As defined by MPI, files are
not just contiguous byte streams. Instead, they are regarded as ordered collections of typed data items. MPI supports
sequential or random access to any integral set of these items. Furthermore, files are opened collectively by a group of
processes.

The common patterns for accessing a shared file (broadcast, scatter, gather, reduction) is expressed by using user-defined
datatypes. Compared to the communication patterns of point-to-point and collective communications, this approach
has the advantage of added flexibility and expressiveness. Data access operations (read and write) are defined for
different kinds of positioning (using explicit offsets, individual file pointers, and shared file pointers), coordination
(non-collective and collective), and synchronism (blocking, nonblocking, and split collective with begin/end phases).

In MPI for Python, all MPI input/output operations are performed through instances of the File class. File handles are
obtained by calling the File.Open method at all processes within a communicator and providing a file name and the
intended access mode. After use, they must be closed by calling the File.Close method. Files even can be deleted
by calling method File.Delete.

After creation, files are typically associated with a per-process view. The view defines the current set of data visible
and accessible from an open file as an ordered set of elementary datatypes. This data layout can be set and queried
with the File.Set_view and File.Get_view methods respectively.

Actual input/output operations are achieved by many methods combining read and write calls with different behavior
regarding positioning, coordination, and synchronism. Summing up, MPI for Python provides the thirty (30) methods
defined in MPI-2 for reading from or writing to files using explicit offsets or file pointers (individual or shared), in
blocking or nonblocking and collective or noncollective versions.

2.9 Environmental Management

Initialization and Exit

Module functions Init or Init_thread and Finalize provide MPI initialization and finalization respectively. Mod-
ule functions Is_initialized and Is_finalized provide the respective tests for initialization and finalization.

Note: MPI_Init() or MPI_Init_thread() is actually called when you import the MPI module from the mpi4py
package, but only if MPI is not already initialized. In such case, calling Init or Init_thread from Python is expected
to generate an MPI error, and in turn an exception will be raised.

Note: MPI_Finalize() is registered (by using Python C/API function Py_AtExit()) for being automatically called
when Python processes exit, but only if mpi4py actually initialized MPI. Therefore, there is no need to call Finalize

9

from Python to ensure MPI finalization.

Implementation Information

• The MPI version number can be retrieved from module function Get_version. It returns a two-integer tuple
(version, subversion).

• The Get_processor_name function can be used to access the processor name.

• The values of predefined attributes attached to the world communicator can be obtained by calling the Comm.
Get_attr method within the COMM_WORLD instance.

Timers

MPI timer functionalities are available through the Wtime and Wtick functions.

Error Handling

In order facilitate handle sharing with other Python modules interfacing MPI-based parallel libraries, the predefined
MPI error handlers ERRORS_RETURN and ERRORS_ARE_FATAL can be assigned to and retrieved from communicators
using methods Comm.Set_errhandler and Comm.Get_errhandler, and similarly for windows and files.

When the predefined error handler ERRORS_RETURN is set, errors returned from MPI calls within Python code
will raise an instance of the exception class Exception, which is a subclass of the standard Python exception
python:RuntimeError.

Note: After import, mpi4py overrides the default MPI rules governing inheritance of error handlers. The
ERRORS_RETURN error handler is set in the predefined COMM_SELF and COMM_WORLD communicators, as well as any
new Comm , Win, or File instance created through mpi4py. If you ever pass such handles to C/C++/Fortran library code,
it is recommended to set the ERRORS_ARE_FATAL error handler on them to ensure MPI errors do not pass silently.

Warning: Importing with from mpi4py.MPI import * will cause a name clashing with the standard Python
python:Exception base class.

3 Tutorial

Warning: Under construction. Contributions very welcome!

Tip: Rolf Rabenseifner at HLRS developed a comprehensive MPI-3.1/4.0 course with slides and a large set of exercises
including solutions. This material is available online for self-study. The slides and exercises show the C, Fortran, and
Python (mpi4py) interfaces. For performance reasons, most Python exercises use NumPy arrays and communication
routines involving buffer-like objects.

10

https://www.hlrs.de/people/rabenseifner/
https://www.hlrs.de/
https://www.hlrs.de/training/par-prog-ws/MPI-course-material

Tip: Victor Eijkhout at TACC authored the book Parallel Programming for Science and Engineering. This book is
available online in PDF and HTML formats. The book covers parallel programming with MPI and OpenMP in C/C++
and Fortran, and MPI in Python using mpi4py.

MPI for Python supports convenient, pickle-based communication of generic Python object as well as fast, near C-
speed, direct array data communication of buffer-provider objects (e.g., NumPy arrays).

• Communication of generic Python objects

You have to use methods with all-lowercase names, like Comm.send , Comm.recv, Comm.bcast, Comm.
scatter, Comm.gather . An object to be sent is passed as a parameter to the communication call, and the
received object is simply the return value.

The Comm.isend and Comm.irecv methods return Request instances; completion of these methods can be
managed using the Request.test and Request.wait methods.

The Comm.recv and Comm.irecv methods may be passed a buffer object that can be repeatedly used to receive
messages avoiding internal memory allocation. This buffer must be sufficiently large to accommodate the trans-
mitted messages; hence, any buffer passed to Comm.recv or Comm.irecv must be at least as long as the pickled
data transmitted to the receiver.

Collective calls like Comm.scatter, Comm.gather, Comm.allgather, Comm.alltoall expect a single value
or a sequence of Comm.size elements at the root or all process. They return a single value, a list of Comm.size
elements, or None.

Note: MPI for Python uses the highest protocol version available in the Python runtime (see the
HIGHEST_PROTOCOL constant in the pickle module). The default protocol can be changed at import time by
setting the MPI4PY_PICKLE_PROTOCOL environment variable, or at runtime by assigning a different value to the
PROTOCOL attribute of the pickle object within the MPI module.

• Communication of buffer-like objects

You have to use method names starting with an upper-case letter, like Comm.Send, Comm.Recv, Comm.Bcast,
Comm.Scatter, Comm.Gather.

In general, buffer arguments to these calls must be explicitly specified by using a 2/3-list/tuple like [data, MPI.
DOUBLE], or [data, count, MPI.DOUBLE] (the former one uses the byte-size of data and the extent of the
MPI datatype to define count).

For vector collectives communication operations like Comm.Scatterv and Comm.Gatherv, buffer arguments are
specified as [data, count, displ, datatype], where count and displ are sequences of integral values.

Automatic MPI datatype discovery for NumPy/GPU arrays and PEP-3118 buffers is supported, but limited to
basic C types (all C/C99-native signed/unsigned integral types and single/double precision real/complex floating
types) and availability of matching datatypes in the underlying MPI implementation. In this case, the buffer-
provider object can be passed directly as a buffer argument, the count and MPI datatype will be inferred.

If mpi4py is built against a GPU-aware MPI implementation, GPU arrays can be passed to upper-
case methods as long as they have either the __dlpack__ and __dlpack_device__ methods or the
__cuda_array_interface__ attribute that are compliant with the respective standard specifications. More-
over, only C-contiguous or Fortran-contiguous GPU arrays are supported. It is important to note that GPU buffers
must be fully ready before any MPI routines operate on them to avoid race conditions. This can be ensured by us-
ing the synchronization API of your array library. mpi4py does not have access to any GPU-specific functionality
and thus cannot perform this operation automatically for users.

11

https://tacc.utexas.edu/~eijkhout/
https://www.tacc.utexas.edu/
https://tinyurl.com/vle335course
https://tacc.utexas.edu/~eijkhout/pcse/html/index.html

3.1 Running Python scripts with MPI

Most MPI programs can be run with the command mpiexec. In practice, running Python programs looks like:

$ mpiexec -n 4 python script.py

to run the program with 4 processors.

3.2 Point-to-Point Communication

• Python objects (pickle under the hood):

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)

• Python objects with non-blocking communication:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
req = comm.isend(data, dest=1, tag=11)
req.wait()

elif rank == 1:
req = comm.irecv(source=0, tag=11)
data = req.wait()

• NumPy arrays (the fast way!):

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

passing MPI datatypes explicitly
if rank == 0:

data = numpy.arange(1000, dtype='i')
comm.Send([data, MPI.INT], dest=1, tag=77)

elif rank == 1:
data = numpy.empty(1000, dtype='i')
comm.Recv([data, MPI.INT], source=0, tag=77)

(continues on next page)

12

(continued from previous page)

automatic MPI datatype discovery
if rank == 0:

data = numpy.arange(100, dtype=numpy.float64)
comm.Send(data, dest=1, tag=13)

elif rank == 1:
data = numpy.empty(100, dtype=numpy.float64)
comm.Recv(data, source=0, tag=13)

3.3 Collective Communication

• Broadcasting a Python dictionary:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = {'key1' : [7, 2.72, 2+3j],

'key2' : ('abc', 'xyz')}
else:

data = None
data = comm.bcast(data, root=0)

• Scattering Python objects:

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
data = [(i+1)**2 for i in range(size)]

else:
data = None

data = comm.scatter(data, root=0)
assert data == (rank+1)**2

• Gathering Python objects:

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

data = (rank+1)**2
data = comm.gather(data, root=0)
if rank == 0:

(continues on next page)

13

(continued from previous page)

for i in range(size):
assert data[i] == (i+1)**2

else:
assert data is None

• Broadcasting a NumPy array:

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = np.arange(100, dtype='i')

else:
data = np.empty(100, dtype='i')

comm.Bcast(data, root=0)
for i in range(100):

assert data[i] == i

• Scattering NumPy arrays:

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = None
if rank == 0:

sendbuf = np.empty([size, 100], dtype='i')
sendbuf.T[:,:] = range(size)

recvbuf = np.empty(100, dtype='i')
comm.Scatter(sendbuf, recvbuf, root=0)
assert np.allclose(recvbuf, rank)

• Gathering NumPy arrays:

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = np.zeros(100, dtype='i') + rank
recvbuf = None
if rank == 0:

recvbuf = np.empty([size, 100], dtype='i')
comm.Gather(sendbuf, recvbuf, root=0)
if rank == 0:

(continues on next page)

14

(continued from previous page)

for i in range(size):
assert np.allclose(recvbuf[i,:], i)

• Parallel matrix-vector product:

from mpi4py import MPI
import numpy

def matvec(comm, A, x):
m = A.shape[0] # local rows
p = comm.Get_size()
xg = numpy.zeros(m*p, dtype='d')
comm.Allgather([x, MPI.DOUBLE],

[xg, MPI.DOUBLE])
y = numpy.dot(A, xg)
return y

3.4 MPI-IO

• Collective I/O with NumPy arrays:

from mpi4py import MPI
import numpy as np

amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
comm = MPI.COMM_WORLD
fh = MPI.File.Open(comm, "./datafile.contig", amode)

buffer = np.empty(10, dtype=np.int)
buffer[:] = comm.Get_rank()

offset = comm.Get_rank()*buffer.nbytes
fh.Write_at_all(offset, buffer)

fh.Close()

• Non-contiguous Collective I/O with NumPy arrays and datatypes:

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
fh = MPI.File.Open(comm, "./datafile.noncontig", amode)

item_count = 10

buffer = np.empty(item_count, dtype='i')
(continues on next page)

15

(continued from previous page)

buffer[:] = rank

filetype = MPI.INT.Create_vector(item_count, 1, size)
filetype.Commit()

displacement = MPI.INT.Get_size()*rank
fh.Set_view(displacement, filetype=filetype)

fh.Write_all(buffer)
filetype.Free()
fh.Close()

3.5 Dynamic Process Management

• Compute Pi - Master (or parent, or client) side:

#!/usr/bin/env python
from mpi4py import MPI
import numpy
import sys

comm = MPI.COMM_SELF.Spawn(sys.executable,
args=['cpi.py'],
maxprocs=5)

N = numpy.array(100, 'i')
comm.Bcast([N, MPI.INT], root=MPI.ROOT)
PI = numpy.array(0.0, 'd')
comm.Reduce(None, [PI, MPI.DOUBLE],

op=MPI.SUM, root=MPI.ROOT)
print(PI)

comm.Disconnect()

• Compute Pi - Worker (or child, or server) side:

#!/usr/bin/env python
from mpi4py import MPI
import numpy

comm = MPI.Comm.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()

N = numpy.array(0, dtype='i')
comm.Bcast([N, MPI.INT], root=0)
h = 1.0 / N; s = 0.0
for i in range(rank, N, size):

x = h * (i + 0.5)
s += 4.0 / (1.0 + x**2)

PI = numpy.array(s * h, dtype='d')
(continues on next page)

16

(continued from previous page)

comm.Reduce([PI, MPI.DOUBLE], None,
op=MPI.SUM, root=0)

comm.Disconnect()

3.6 CUDA-aware MPI + Python GPU arrays

• Reduce-to-all CuPy arrays:

from mpi4py import MPI
import cupy as cp

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = cp.arange(10, dtype='i')
recvbuf = cp.empty_like(sendbuf)
assert hasattr(sendbuf, '__cuda_array_interface__')
assert hasattr(recvbuf, '__cuda_array_interface__')
cp.cuda.get_current_stream().synchronize()
comm.Allreduce(sendbuf, recvbuf)

assert cp.allclose(recvbuf, sendbuf*size)

3.7 One-Sided Communications

• Read from (write to) the entire RMA window:

import numpy as np
from mpi4py import MPI
from mpi4py.util import dtlib

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

datatype = MPI.FLOAT
np_dtype = dtlib.to_numpy_dtype(datatype)
itemsize = datatype.Get_size()

N = 10
win_size = N * itemsize if rank == 0 else 0
win = MPI.Win.Allocate(win_size, comm=comm)

buf = np.empty(N, dtype=np_dtype)
if rank == 0:

buf.fill(42)
win.Lock(rank=0)
win.Put(buf, target_rank=0)
win.Unlock(rank=0)

(continues on next page)

17

(continued from previous page)

comm.Barrier()
else:

comm.Barrier()
win.Lock(rank=0)
win.Get(buf, target_rank=0)
win.Unlock(rank=0)
assert np.all(buf == 42)

• Accessing a part of the RMA window using the target argument, which is defined as (offset, count,
datatype):

import numpy as np
from mpi4py import MPI
from mpi4py.util import dtlib

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

datatype = MPI.FLOAT
np_dtype = dtlib.to_numpy_dtype(datatype)
itemsize = datatype.Get_size()

N = comm.Get_size() + 1
win_size = N * itemsize if rank == 0 else 0
win = MPI.Win.Allocate(

size=win_size,
disp_unit=itemsize,
comm=comm,

)
if rank == 0:

mem = np.frombuffer(win, dtype=np_dtype)
mem[:] = np.arange(len(mem), dtype=np_dtype)

comm.Barrier()

buf = np.zeros(3, dtype=np_dtype)
target = (rank, 2, datatype)
win.Lock(rank=0)
win.Get(buf, target_rank=0, target=target)
win.Unlock(rank=0)
assert np.all(buf == [rank, rank+1, 0])

3.8 Wrapping with SWIG

• C source:

/* file: helloworld.c */
void sayhello(MPI_Comm comm)
{
int size, rank;
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);

(continues on next page)

18

(continued from previous page)

printf("Hello, World! "
"I am process %d of %d.\n",
rank, size);

}

• SWIG interface file:

// file: helloworld.i
%module helloworld
%{
#include <mpi.h>
#include "helloworld.c"
}%

%include mpi4py/mpi4py.i
%mpi4py_typemap(Comm, MPI_Comm);
void sayhello(MPI_Comm comm);

• Try it in the Python prompt:

>>> from mpi4py import MPI
>>> import helloworld
>>> helloworld.sayhello(MPI.COMM_WORLD)
Hello, World! I am process 0 of 1.

3.9 Wrapping with F2Py

• Fortran 90 source:

! file: helloworld.f90
subroutine sayhello(comm)
use mpi
implicit none
integer :: comm, rank, size, ierr
call MPI_Comm_size(comm, size, ierr)
call MPI_Comm_rank(comm, rank, ierr)
print *, 'Hello, World! I am process ',rank,' of ',size,'.'

end subroutine sayhello

• Compiling example using f2py

$ f2py -c --f90exec=mpif90 helloworld.f90 -m helloworld

• Try it in the Python prompt:

>>> from mpi4py import MPI
>>> import helloworld
>>> fcomm = MPI.COMM_WORLD.py2f()
>>> helloworld.sayhello(fcomm)
Hello, World! I am process 0 of 1.

19

4 mpi4py

4.1 Runtime configuration options

mpi4py.rc

This object has attributes exposing runtime configuration options that become effective at import time of the MPI
module.

Attributes Summary

initialize Automatic MPI initialization at import
threads Request initialization with thread support
thread_level Level of thread support to request
finalize Automatic MPI finalization at exit
fast_reduce Use tree-based reductions for objects
recv_mprobe Use matched probes to receive objects
errors Error handling policy

Attributes Documentation

mpi4py.rc.initialize

Automatic MPI initialization at import.

Type
bool

Default
True

See also:

MPI4PY_RC_INITIALIZE

mpi4py.rc.threads

Request initialization with thread support.

Type
bool

Default
True

See also:

MPI4PY_RC_THREADS

mpi4py.rc.thread_level

Level of thread support to request.

Type
str

Default
"multiple"

20

Choices
"multiple", "serialized", "funneled", "single"

See also:

MPI4PY_RC_THREAD_LEVEL

mpi4py.rc.finalize

Automatic MPI finalization at exit.

Type
None or bool

Default
None

See also:

MPI4PY_RC_FINALIZE

mpi4py.rc.fast_reduce

Use tree-based reductions for objects.

Type
bool

Default
True

See also:

MPI4PY_RC_FAST_REDUCE

mpi4py.rc.recv_mprobe

Use matched probes to receive objects.

Type
bool

Default
True

See also:

MPI4PY_RC_RECV_MPROBE

mpi4py.rc.errors

Error handling policy.

Type
str

Default
"exception"

Choices
"exception", "default", "fatal"

See also:

MPI4PY_RC_ERRORS

21

Example

MPI for Python features automatic initialization and finalization of the MPI execution environment. By using the
mpi4py.rc object, MPI initialization and finalization can be handled programatically:

import mpi4py
mpi4py.rc.initialize = False # do not initialize MPI automatically
mpi4py.rc.finalize = False # do not finalize MPI automatically

from mpi4py import MPI # import the 'MPI' module

MPI.Init() # manual initialization of the MPI environment
... # your finest code here ...
MPI.Finalize() # manual finalization of the MPI environment

4.2 Environment variables

The following environment variables override the corresponding attributes of the mpi4py.rc and MPI.pickle objects
at import time of the MPI module.

Note: For variables of boolean type, accepted values are 0 and 1 (interpreted as False and True, respectively), and
strings specifying a YAML boolean value (case-insensitive).

MPI4PY_RC_INITIALIZE

Type
bool

Default
True

Whether to automatically initialize MPI at import time of the mpi4py.MPI module.

See also:

mpi4py.rc.initialize

New in version 3.1.0.

MPI4PY_RC_FINALIZE

Type
None | bool

Default
None

Choices
None, True, False

Whether to automatically finalize MPI at exit time of the Python process.

See also:

mpi4py.rc.finalize

New in version 3.1.0.

22

https://yaml.org/type/bool.html

MPI4PY_RC_THREADS

Type
bool

Default
True

Whether to initialize MPI with thread support.

See also:

mpi4py.rc.threads

New in version 3.1.0.

MPI4PY_RC_THREAD_LEVEL

Default
"multiple"

Choices
"single", "funneled", "serialized", "multiple"

The level of required thread support.

See also:

mpi4py.rc.thread_level

New in version 3.1.0.

MPI4PY_RC_FAST_REDUCE

Type
bool

Default
True

Whether to use tree-based reductions for objects.

See also:

mpi4py.rc.fast_reduce

New in version 3.1.0.

MPI4PY_RC_RECV_MPROBE

Type
bool

Default
True

Whether to use matched probes to receive objects.

See also:

mpi4py.rc.recv_mprobe

MPI4PY_RC_ERRORS

Default
"exception"

23

Choices
"exception", "default", "fatal"

Controls default MPI error handling policy.

See also:

mpi4py.rc.errors

New in version 3.1.0.

MPI4PY_PICKLE_PROTOCOL

Type
int

Default
pickle.HIGHEST_PROTOCOL

Controls the default pickle protocol to use when communicating Python objects.

See also:

PROTOCOL attribute of the MPI.pickle object within the MPI module.

New in version 3.1.0.

MPI4PY_PICKLE_THRESHOLD

Type
int

Default
262144

Controls the default buffer size threshold for switching from in-band to out-of-band buffer handling when using
pickle protocol version 5 or higher.

See also:

Module mpi4py.util.pkl5.

New in version 3.1.2.

4.3 Miscellaneous functions

mpi4py.profile()

mpi4py.get_config()

mpi4py.get_include()

24

5 mpi4py.MPI

5.1 Classes

Ancillary

Datatype

Status

Request

Prequest

Grequest

Op

Group

Info

Communication

Comm

Intracomm

Topocomm

Cartcomm

Graphcomm

Distgraphcomm

Intercomm

Message

25

One-sided operations

Win

Input/Output

File

Error handling

Errhandler

Exception

Auxiliary

Pickle

memory

5.2 Functions

Version inquiry

Get_version

Get_library_version

26

Initialization and finalization

Init

Init_thread

Finalize

Is_initialized

Is_finalized

Query_thread

Is_thread_main

Memory allocation

Alloc_mem

Free_mem

Address manipulation

Get_address

Aint_add

Aint_diff

Timer

Wtick

Wtime

27

Error handling

Get_error_class

Get_error_string

Add_error_class

Add_error_code

Add_error_string

Dynamic process management

Open_port

Close_port

Publish_name

Unpublish_name

Lookup_name

Miscellanea

Attach_buffer

Detach_buffer

Compute_dims

Get_processor_name

Register_datarep

Pcontrol

28

Utilities

get_vendor

5.3 Attributes

UNDEFINED

ANY_SOURCE

ANY_TAG

PROC_NULL

ROOT

BOTTOM

IN_PLACE

KEYVAL_INVALID

TAG_UB

HOST

IO

WTIME_IS_GLOBAL

UNIVERSE_SIZE

APPNUM

LASTUSEDCODE

WIN_BASE

WIN_SIZE

WIN_DISP_UNIT

WIN_CREATE_FLAVOR

WIN_FLAVOR

WIN_MODEL

continues on next page

29

Table 1 – continued from previous page
SUCCESS

ERR_LASTCODE

ERR_COMM

ERR_GROUP

ERR_TYPE

ERR_REQUEST

ERR_OP

ERR_BUFFER

ERR_COUNT

ERR_TAG

ERR_RANK

ERR_ROOT

ERR_TRUNCATE

ERR_IN_STATUS

ERR_PENDING

ERR_TOPOLOGY

ERR_DIMS

ERR_ARG

ERR_OTHER

ERR_UNKNOWN

ERR_INTERN

ERR_INFO

ERR_FILE

ERR_WIN

ERR_KEYVAL

ERR_INFO_KEY

continues on next page

30

Table 1 – continued from previous page
ERR_INFO_VALUE

ERR_INFO_NOKEY

ERR_ACCESS

ERR_AMODE

ERR_BAD_FILE

ERR_FILE_EXISTS

ERR_FILE_IN_USE

ERR_NO_SPACE

ERR_NO_SUCH_FILE

ERR_IO

ERR_READ_ONLY

ERR_CONVERSION

ERR_DUP_DATAREP

ERR_UNSUPPORTED_DATAREP

ERR_UNSUPPORTED_OPERATION

ERR_NAME

ERR_NO_MEM

ERR_NOT_SAME

ERR_PORT

ERR_QUOTA

ERR_SERVICE

ERR_SPAWN

ERR_BASE

ERR_SIZE

ERR_DISP

ERR_ASSERT

continues on next page

31

Table 1 – continued from previous page
ERR_LOCKTYPE

ERR_RMA_CONFLICT

ERR_RMA_SYNC

ERR_RMA_RANGE

ERR_RMA_ATTACH

ERR_RMA_SHARED

ERR_RMA_FLAVOR

ORDER_C

ORDER_F

ORDER_FORTRAN

TYPECLASS_INTEGER

TYPECLASS_REAL

TYPECLASS_COMPLEX

DISTRIBUTE_NONE

DISTRIBUTE_BLOCK

DISTRIBUTE_CYCLIC

DISTRIBUTE_DFLT_DARG

COMBINER_NAMED

COMBINER_DUP

COMBINER_CONTIGUOUS

COMBINER_VECTOR

COMBINER_HVECTOR

COMBINER_INDEXED

COMBINER_HINDEXED

COMBINER_INDEXED_BLOCK

COMBINER_HINDEXED_BLOCK

continues on next page

32

Table 1 – continued from previous page
COMBINER_STRUCT

COMBINER_SUBARRAY

COMBINER_DARRAY

COMBINER_RESIZED

COMBINER_F90_REAL

COMBINER_F90_COMPLEX

COMBINER_F90_INTEGER

IDENT

CONGRUENT

SIMILAR

UNEQUAL

CART

GRAPH

DIST_GRAPH

UNWEIGHTED

WEIGHTS_EMPTY

COMM_TYPE_SHARED

BSEND_OVERHEAD

WIN_FLAVOR_CREATE

WIN_FLAVOR_ALLOCATE

WIN_FLAVOR_DYNAMIC

WIN_FLAVOR_SHARED

WIN_SEPARATE

WIN_UNIFIED

MODE_NOCHECK

MODE_NOSTORE

continues on next page

33

Table 1 – continued from previous page
MODE_NOPUT

MODE_NOPRECEDE

MODE_NOSUCCEED

LOCK_EXCLUSIVE

LOCK_SHARED

MODE_RDONLY

MODE_WRONLY

MODE_RDWR

MODE_CREATE

MODE_EXCL

MODE_DELETE_ON_CLOSE

MODE_UNIQUE_OPEN

MODE_SEQUENTIAL

MODE_APPEND

SEEK_SET

SEEK_CUR

SEEK_END

DISPLACEMENT_CURRENT

DISP_CUR

THREAD_SINGLE

THREAD_FUNNELED

THREAD_SERIALIZED

THREAD_MULTIPLE

VERSION

SUBVERSION

MAX_PROCESSOR_NAME

continues on next page

34

Table 1 – continued from previous page
MAX_ERROR_STRING

MAX_PORT_NAME

MAX_INFO_KEY

MAX_INFO_VAL

MAX_OBJECT_NAME

MAX_DATAREP_STRING

MAX_LIBRARY_VERSION_STRING

DATATYPE_NULL

UB

LB

PACKED

BYTE

AINT

OFFSET

COUNT

CHAR

WCHAR

SIGNED_CHAR

SHORT

INT

LONG

LONG_LONG

UNSIGNED_CHAR

UNSIGNED_SHORT

UNSIGNED

UNSIGNED_LONG

continues on next page

35

Table 1 – continued from previous page
UNSIGNED_LONG_LONG

FLOAT

DOUBLE

LONG_DOUBLE

C_BOOL

INT8_T

INT16_T

INT32_T

INT64_T

UINT8_T

UINT16_T

UINT32_T

UINT64_T

C_COMPLEX

C_FLOAT_COMPLEX

C_DOUBLE_COMPLEX

C_LONG_DOUBLE_COMPLEX

CXX_BOOL

CXX_FLOAT_COMPLEX

CXX_DOUBLE_COMPLEX

CXX_LONG_DOUBLE_COMPLEX

SHORT_INT

INT_INT

TWOINT

LONG_INT

FLOAT_INT

continues on next page

36

Table 1 – continued from previous page
DOUBLE_INT

LONG_DOUBLE_INT

CHARACTER

LOGICAL

INTEGER

REAL

DOUBLE_PRECISION

COMPLEX

DOUBLE_COMPLEX

LOGICAL1

LOGICAL2

LOGICAL4

LOGICAL8

INTEGER1

INTEGER2

INTEGER4

INTEGER8

INTEGER16

REAL2

REAL4

REAL8

REAL16

COMPLEX4

COMPLEX8

COMPLEX16

COMPLEX32

continues on next page

37

Table 1 – continued from previous page
UNSIGNED_INT

SIGNED_SHORT

SIGNED_INT

SIGNED_LONG

SIGNED_LONG_LONG

BOOL

SINT8_T

SINT16_T

SINT32_T

SINT64_T

F_BOOL

F_INT

F_FLOAT

F_DOUBLE

F_COMPLEX

F_FLOAT_COMPLEX

F_DOUBLE_COMPLEX

REQUEST_NULL

MESSAGE_NULL

MESSAGE_NO_PROC

OP_NULL

MAX

MIN

SUM

PROD

LAND

continues on next page

38

Table 1 – continued from previous page
BAND

LOR

BOR

LXOR

BXOR

MAXLOC

MINLOC

REPLACE

NO_OP

GROUP_NULL

GROUP_EMPTY

INFO_NULL

INFO_ENV

ERRHANDLER_NULL

ERRORS_RETURN

ERRORS_ARE_FATAL

COMM_NULL

COMM_SELF

COMM_WORLD

WIN_NULL

FILE_NULL

pickle

39

6 mpi4py.futures

New in version 3.0.0.

This package provides a high-level interface for asynchronously executing callables on a pool of worker processes using
MPI for inter-process communication.

6.1 concurrent.futures

The mpi4py.futures package is based on concurrent.futures from the Python standard library. More precisely,
mpi4py.futures provides the MPIPoolExecutor class as a concrete implementation of the abstract class Executor.
The submit() interface schedules a callable to be executed asynchronously and returns a Future object representing
the execution of the callable. Future instances can be queried for the call result or exception. Sets of Future instances
can be passed to the wait() and as_completed() functions.

Note: The concurrent.futures package was introduced in Python 3.2. A backport targeting Python 2.7 is available
on PyPI. The mpi4py.futures package uses concurrent.futures if available, either from the Python 3 standard
library or the Python 2.7 backport if installed. Otherwise, mpi4py.futures uses a bundled copy of core functionality
backported from Python 3.5 to work with Python 2.7.

See also:

Module concurrent.futures
Documentation of the concurrent.futures standard module.

6.2 MPIPoolExecutor

The MPIPoolExecutor class uses a pool of MPI processes to execute calls asynchronously. By performing computa-
tions in separate processes, it allows to side-step the global interpreter lock but also means that only picklable objects can
be executed and returned. The __main__ module must be importable by worker processes, thus MPIPoolExecutor
instances may not work in the interactive interpreter.

MPIPoolExecutor takes advantage of the dynamic process management features introduced in the MPI-2 standard.
In particular, the MPI.Intracomm.Spawn method of MPI.COMM_SELF is used in the master (or parent) process to
spawn new worker (or child) processes running a Python interpreter. The master process uses a separate thread (one
for each MPIPoolExecutor instance) to communicate back and forth with the workers. The worker processes serve
the execution of tasks in the main (and only) thread until they are signaled for completion.

Note: The worker processes must import the main script in order to unpickle any callable defined in the __main__
module and submitted from the master process. Furthermore, the callables may need access to other global vari-
ables. At the worker processes, mpi4py.futures executes the main script code (using the runpy module) under
the __worker__ namespace to define the __main__ module. The __main__ and __worker__ modules are added to
sys.modules (both at the master and worker processes) to ensure proper pickling and unpickling.

Warning: During the initial import phase at the workers, the main script cannot create and use new
MPIPoolExecutor instances. Otherwise, each worker would attempt to spawn a new pool of workers, leading
to infinite recursion. mpi4py.futures detects such recursive attempts to spawn new workers and aborts the MPI
execution environment. As the main script code is run under the __worker__ namespace, the easiest way to avoid
spawn recursion is using the idiom if __name__ == '__main__': ... in the main script.

40

https://github.com/agronholm/pythonfutures
https://pypi.org/project/futures

class mpi4py.futures.MPIPoolExecutor(max_workers=None, initializer=None, initargs=(), **kwargs)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If
max_workers is None or not given, its value is determined from the MPI4PY_FUTURES_MAX_WORKERS environ-
ment variable if set, or the MPI universe size if set, otherwise a single worker process is spawned. If max_workers
is lower than or equal to 0, then a ValueError will be raised.

initializer is an optional callable that is called at the start of each worker process before executing any tasks;
initargs is a tuple of arguments passed to the initializer. If initializer raises an exception, all pending tasks and
any attempt to submit new tasks to the pool will raise a BrokenExecutor exception.

Other parameters:

• python_exe: Path to the Python interpreter executable used to spawn worker processes, otherwise sys.
executable is used.

• python_args: list or iterable with additional command line flags to pass to the Python executable. Com-
mand line flags determined from inspection of sys.flags, sys.warnoptions and sys._xoptions in
are passed unconditionally.

• mpi_info: dict or iterable yielding (key, value) pairs. These (key, value) pairs are passed (through
an MPI.Info object) to the MPI.Intracomm.Spawn call used to spawn worker processes. This mechanism
allows telling the MPI runtime system where and how to start the processes. Check the documentation of
the backend MPI implementation about the set of keys it interprets and the corresponding format for values.

• globals: dict or iterable yielding (name, value) pairs to initialize the main module namespace in worker
processes.

• main: If set to False, do not import the __main__ module in worker processes. Setting main to False
prevents worker processes from accessing definitions in the parent __main__ namespace.

• path: list or iterable with paths to append to sys.path in worker processes to extend the module search
path.

• wdir: Path to set the current working directory in worker processes using os.chdir(). The initial working
directory is set by the MPI implementation. Quality MPI implementations should honor a wdir info key
passed through mpi_info, although such feature is not mandatory.

• env: dict or iterable yielding (name, value) pairs with environment variables to update os.environ
in worker processes. The initial environment is set by the MPI implementation. MPI implementations may
allow setting the initial environment through mpi_info, however such feature is not required nor recom-
mended by the MPI standard.

submit(func, *args, **kwargs)
Schedule the callable, func, to be executed as func(*args, **kwargs) and returns a Future object
representing the execution of the callable.

executor = MPIPoolExecutor(max_workers=1)
future = executor.submit(pow, 321, 1234)
print(future.result())

map(func, *iterables, timeout=None, chunksize=1, **kwargs)
Equivalent to map(func, *iterables) except func is executed asynchronously and several calls to
func may be made concurrently, out-of-order, in separate processes. The returned iterator raises a
TimeoutError if __next__() is called and the result isn’t available after timeout seconds from the origi-
nal call to map(). timeout can be an int or a float. If timeout is not specified or None, there is no limit to the
wait time. If a call raises an exception, then that exception will be raised when its value is retrieved from
the iterator. This method chops iterables into a number of chunks which it submits to the pool as separate
tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer.
For very long iterables, using a large value for chunksize can significantly improve performance compared

41

to the default size of one. By default, the returned iterator yields results in-order, waiting for successive
tasks to complete . This behavior can be changed by passing the keyword argument unordered as True,
then the result iterator will yield a result as soon as any of the tasks complete.

executor = MPIPoolExecutor(max_workers=3)
for result in executor.map(pow, [2]*32, range(32)):

print(result)

starmap(func, iterable, timeout=None, chunksize=1, **kwargs)
Equivalent to itertools.starmap(func, iterable). Used instead of map() when argument param-
eters are already grouped in tuples from a single iterable (the data has been “pre-zipped”). map(func,
*iterable) is equivalent to starmap(func, zip(*iterable)).

executor = MPIPoolExecutor(max_workers=3)
iterable = ((2, n) for n in range(32))
for result in executor.starmap(pow, iterable):

print(result)

shutdown(wait=True, cancel_futures=False)
Signal the executor that it should free any resources that it is using when the currently pending futures are
done executing. Calls to submit() and map() made after shutdown() will raise RuntimeError.

If wait is True then this method will not return until all the pending futures are done executing and the
resources associated with the executor have been freed. If wait is False then this method will return
immediately and the resources associated with the executor will be freed when all pending futures are done
executing. Regardless of the value of wait, the entire Python program will not exit until all pending futures
are done executing.

If cancel_futures is True, this method will cancel all pending futures that the executor has not started
running. Any futures that are completed or running won’t be cancelled, regardless of the value of can-
cel_futures.

You can avoid having to call this method explicitly if you use the with statement, which will shutdown the
executor instance (waiting as if shutdown() were called with wait set to True).

import time
with MPIPoolExecutor(max_workers=1) as executor:

future = executor.submit(time.sleep, 2)
assert future.done()

bootup(wait=True)
Signal the executor that it should allocate eagerly any required resources (in particular, MPI worker pro-
cesses). If wait is True, then bootup() will not return until the executor resources are ready to process
submissions. Resources are automatically allocated in the first call to submit(), thus calling bootup()
explicitly is seldom needed.

MPI4PY_FUTURES_MAX_WORKERS

If the max_workers parameter to MPIPoolExecutor is None or not given, the MPI4PY_FUTURES_MAX_WORKERS
environment variable provides fallback value for the maximum number of MPI worker processes to spawn.

Note: As the master process uses a separate thread to perform MPI communication with the workers, the backend
MPI implementation should provide support for MPI.THREAD_MULTIPLE. However, some popular MPI implemen-
tations do not support yet concurrent MPI calls from multiple threads. Additionally, users may decide to initial-
ize MPI with a lower level of thread support. If the level of thread support in the backend MPI is less than MPI.

42

THREAD_MULTIPLE, mpi4py.futures will use a global lock to serialize MPI calls. If the level of thread support is
less than MPI.THREAD_SERIALIZED, mpi4py.futures will emit a RuntimeWarning.

Warning: If the level of thread support in the backend MPI is less than MPI.THREAD_SERIALIZED (i.e, it is
either MPI.THREAD_SINGLE or MPI.THREAD_FUNNELED), in theory mpi4py.futures cannot be used. Rather than
raising an exception, mpi4py.futures emits a warning and takes a “cross-fingers” attitude to continue execution
in the hope that serializing MPI calls with a global lock will actually work.

6.3 MPICommExecutor

Legacy MPI-1 implementations (as well as some vendor MPI-2 implementations) do not support the dynamic process
management features introduced in the MPI-2 standard. Additionally, job schedulers and batch systems in supercom-
puting facilities may pose additional complications to applications using the MPI_Comm_spawn() routine.

With these issues in mind, mpi4py.futures supports an additonal, more traditional, SPMD-like usage pattern re-
quiring MPI-1 calls only. Python applications are started the usual way, e.g., using the mpiexec command. Python
code should make a collective call to the MPICommExecutor context manager to partition the set of MPI processes
within a MPI communicator in one master processes and many workers processes. The master process gets access to
an MPIPoolExecutor instance to submit tasks. Meanwhile, the worker process follow a different execution path and
team-up to execute the tasks submitted from the master.

Besides alleviating the lack of dynamic process managment features in legacy MPI-1 or partial MPI-2 implementa-
tions, the MPICommExecutor context manager may be useful in classic MPI-based Python applications willing to take
advantage of the simple, task-based, master/worker approach available in the mpi4py.futures package.

class mpi4py.futures.MPICommExecutor(comm=None, root=0)
Context manager for MPIPoolExecutor. This context manager splits a MPI (intra)communicator comm (de-
faults to MPI.COMM_WORLD if not provided or None) in two disjoint sets: a single master process (with rank root
in comm) and the remaining worker processes. These sets are then connected through an intercommunicator.
The target of the with statement is assigned either an MPIPoolExecutor instance (at the master) or None (at
the workers).

from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

with MPICommExecutor(MPI.COMM_WORLD, root=0) as executor:
if executor is not None:
future = executor.submit(abs, -42)
assert future.result() == 42
answer = set(executor.map(abs, [-42, 42]))
assert answer == {42}

Warning: If MPICommExecutor is passed a communicator of size one (e.g., MPI.COMM_SELF), then the executor
instace assigned to the target of the with statement will execute all submitted tasks in a single worker thread, thus
ensuring that task execution still progress asynchronously. However, the GIL will prevent the main and worker
threads from running concurrently in multicore processors. Moreover, the thread context switching may harm no-
ticeably the performance of CPU-bound tasks. In case of I/O-bound tasks, the GIL is not usually an issue, however,
as a single worker thread is used, it progress one task at a time. We advice against using MPICommExecutor with
communicators of size one and suggest refactoring your code to use instead a ThreadPoolExecutor.

43

6.4 Command line

Recalling the issues related to the lack of support for dynamic process managment features in MPI implementations,
mpi4py.futures supports an alternative usage pattern where Python code (either from scripts, modules, or zip files)
is run under command line control of the mpi4py.futures package by passing -m mpi4py.futures to the python
executable. The mpi4py.futures invocation should be passed a pyfile path to a script (or a zipfile/directory containing
a __main__.py file). Additionally, mpi4py.futures accepts -m mod to execute a module named mod, -c cmd to
execute a command string cmd, or even - to read commands from standard input (sys.stdin). Summarizing, mpi4py.
futures can be invoked in the following ways:

• $ mpiexec -n numprocs python -m mpi4py.futures pyfile [arg] ...

• $ mpiexec -n numprocs python -m mpi4py.futures -m mod [arg] ...

• $ mpiexec -n numprocs python -m mpi4py.futures -c cmd [arg] ...

• $ mpiexec -n numprocs python -m mpi4py.futures - [arg] ...

Before starting the main script execution, mpi4py.futures splits MPI.COMM_WORLD in one master (the process
with rank 0 in MPI.COMM_WORLD) and numprocs - 1 workers and connects them through an MPI intercommunica-
tor. Afterwards, the master process proceeds with the execution of the user script code, which eventually creates
MPIPoolExecutor instances to submit tasks. Meanwhile, the worker processes follow a different execution path to
serve the master. Upon successful termination of the main script at the master, the entire MPI execution environment
exists gracefully. In case of any unhandled exception in the main script, the master process calls MPI.COMM_WORLD.
Abort(1) to prevent deadlocks and force termination of entire MPI execution environment.

Warning: Running scripts under command line control of mpi4py.futures is quite similar to executing a single-
process application that spawn additional workers as required. However, there is a very important difference users
should be aware of. All MPIPoolExecutor instances created at the master will share the pool of workers. Tasks
submitted at the master from many different executors will be scheduled for execution in random order as soon as
a worker is idle. Any executor can easily starve all the workers (e.g., by calling MPIPoolExecutor.map() with
long iterables). If that ever happens, submissions from other executors will not be serviced until free workers are
available.

See also:

python:using-on-cmdline
Documentation on Python command line interface.

6.5 Examples

The following julia.py script computes the Julia set and dumps an image to disk in binary PGM format. The code
starts by importing MPIPoolExecutor from the mpi4py.futures package. Next, some global constants and functions
implement the computation of the Julia set. The computations are protected with the standard if __name__ ==
'__main__':... idiom. The image is computed by whole scanlines submitting all these tasks at once using the map
method. The result iterator yields scanlines in-order as the tasks complete. Finally, each scanline is dumped to disk.

Listing 1: julia.py

1 from mpi4py.futures import MPIPoolExecutor
2

3 x0, x1, w = -2.0, +2.0, 640*2
4 y0, y1, h = -1.5, +1.5, 480*2
5 dx = (x1 - x0) / w

(continues on next page)

44

https://en.wikipedia.org/wiki/Julia_set
http://netpbm.sourceforge.net/doc/pgm.html

(continued from previous page)

6 dy = (y1 - y0) / h
7

8 c = complex(0, 0.65)
9

10 def julia(x, y):
11 z = complex(x, y)
12 n = 255
13 while abs(z) < 3 and n > 1:
14 z = z**2 + c
15 n -= 1
16 return n
17

18 def julia_line(k):
19 line = bytearray(w)
20 y = y1 - k * dy
21 for j in range(w):
22 x = x0 + j * dx
23 line[j] = julia(x, y)
24 return line
25

26 if __name__ == '__main__':
27

28 with MPIPoolExecutor() as executor:
29 image = executor.map(julia_line, range(h))
30 with open('julia.pgm', 'wb') as f:
31 f.write(b'P5 %d %d %d\n' % (w, h, 255))
32 for line in image:
33 f.write(line)

The recommended way to execute the script is by using the mpiexec command specifying one MPI process (master)
and (optional but recommended) the desired MPI universe size, which determines the number of additional dynami-
cally spawned processes (workers). The MPI universe size is provided either by a batch system or set by the user via
command-line arguments to mpiexec or environment variables. Below we provide examples for MPICH and Open
MPI implementations1. In all of these examples, the mpiexec command launches a single master process running the
Python interpreter and executing the main script. When required, mpi4py.futures spawns the pool of 16 worker
processes. The master submits tasks to the workers and waits for the results. The workers receive incoming tasks,
execute them, and send back the results to the master.

When using MPICH implementation or its derivatives based on the Hydra process manager, users can set the MPI
universe size via the -usize argument to mpiexec:

$ mpiexec -n 1 -usize 17 python julia.py

or, alternatively, by setting the MPIEXEC_UNIVERSE_SIZE environment variable:

$ MPIEXEC_UNIVERSE_SIZE=17 mpiexec -n 1 python julia.py

In the Open MPI implementation, the MPI universe size can be set via the -host argument to mpiexec:

$ mpiexec -n 1 -host <hostname>:17 python julia.py

1 When using an MPI implementation other than MPICH or Open MPI, please check the documentation of the implementation and/or batch
system for the ways to specify the desired MPI universe size.

45

Another way to specify the number of workers is to use the mpi4py.futures-specific environment variable
MPI4PY_FUTURES_MAX_WORKERS:

$ MPI4PY_FUTURES_MAX_WORKERS=16 mpiexec -n 1 python julia.py

Note that in this case, the MPI universe size is ignored.

Alternatively, users may decide to execute the script in a more traditional way, that is, all the MPI processes are started
at once. The user script is run under command-line control of mpi4py.futures passing the -m flag to the python
executable:

$ mpiexec -n 17 python -m mpi4py.futures julia.py

As explained previously, the 17 processes are partitioned in one master and 16 workers. The master process executes
the main script while the workers execute the tasks submitted by the master.

GIL
See global interpreter lock.

7 mpi4py.util

New in version 3.1.0.

The mpi4py.util package collects miscellaneous utilities within the intersection of Python and MPI.

7.1 mpi4py.util.pkl5

New in version 3.1.0.

pickle protocol 5 (see PEP 574) introduced support for out-of-band buffers, allowing for more efficient handling of
certain object types with large memory footprints.

MPI for Python uses the traditional in-band handling of buffers. This approach is appropriate for communicating
non-buffer Python objects, or buffer-like objects with small memory footprints. For point-to-point communication,
in-band buffer handling allows for the communication of a pickled stream with a single MPI message, at the expense
of additional CPU and memory overhead in the pickling and unpickling steps.

The mpi4py.util.pkl5module provides communicator wrapper classes reimplementing pickle-based point-to-point
communication methods using pickle protocol 5. Handling out-of-band buffers necessarily involve multiple MPI mes-
sages, thus increasing latency and hurting performance in case of small size data. However, in case of large size data, the
zero-copy savings of out-of-band buffer handling more than offset the extra latency costs. Additionally, these wrapper
methods overcome the infamous 2 GiB message count limit (MPI-1 to MPI-3).

Note: Support for pickle protocol 5 is available in the picklemodule within the Python standard library since Python
3.8. Previous Python 3 releases can use the pickle5 backport, which is available on PyPI and can be installed with:

python -m pip install pickle5

class mpi4py.util.pkl5.Request(*args, **kwargs)
Custom request class for nonblocking communications.

Note: Request is not a subclass of mpi4py.MPI.Request

46

https://peps.python.org/pep-0574/
https://pypi.org/project/pickle5/

Free()

cancel()

get_status()

test()

wait()

testall()

Classmethod

waitall()

Classmethod

class mpi4py.util.pkl5.Message(*args, **kwargs)
Custom message class for matching probes.

Note: Message is not a subclass of mpi4py.MPI.Message

recv()

irecv()

probe()

Classmethod

iprobe()

Classmethod

class mpi4py.util.pkl5.Comm(*args, **kwargs)
Base communicator wrapper class.

send()

bsend()

ssend()

isend()

ibsend()

issend()

recv()

irecv()

Warning: This method cannot be supported reliably and raises RuntimeError.

sendrecv()

47

mprobe()

improbe()

bcast()

class mpi4py.util.pkl5.Intracomm(*args, **kwargs)
Intracommunicator wrapper class.

class mpi4py.util.pkl5.Intercomm(*args, **kwargs)
Intercommunicator wrapper class.

Examples

Listing 2: test-pkl5-1.py

1 import numpy as np
2 from mpi4py import MPI
3 from mpi4py.util import pkl5
4

5 comm = pkl5.Intracomm(MPI.COMM_WORLD) # comm wrapper
6 size = comm.Get_size()
7 rank = comm.Get_rank()
8 dst = (rank + 1) % size
9 src = (rank - 1) % size

10

11 sobj = np.full(1024**3, rank, dtype='i4') # > 4 GiB
12 sreq = comm.isend(sobj, dst, tag=42)
13 robj = comm.recv (None, src, tag=42)
14 sreq.Free()
15

16 assert np.min(robj) == src
17 assert np.max(robj) == src

Listing 3: test-pkl5-2.py

1 import numpy as np
2 from mpi4py import MPI
3 from mpi4py.util import pkl5
4

5 comm = pkl5.Intracomm(MPI.COMM_WORLD) # comm wrapper
6 size = comm.Get_size()
7 rank = comm.Get_rank()
8 dst = (rank + 1) % size
9 src = (rank - 1) % size

10

11 sobj = np.full(1024**3, rank, dtype='i4') # > 4 GiB
12 sreq = comm.isend(sobj, dst, tag=42)
13

14 status = MPI.Status()
15 rmsg = comm.mprobe(status=status)
16 assert status.Get_source() == src
17 assert status.Get_tag() == 42

(continues on next page)

48

(continued from previous page)

18 rreq = rmsg.irecv()
19 robj = rreq.wait()
20

21 sreq.Free()
22 assert np.max(robj) == src
23 assert np.min(robj) == src

7.2 mpi4py.util.dtlib

New in version 3.1.0.

The mpi4py.util.dtlib module provides converter routines between NumPy and MPI datatypes.

mpi4py.util.dtlib.from_numpy_dtype()

Parameters
dtype – NumPy dtype-like object.

mpi4py.util.dtlib.to_numpy_dtype()

Parameters
datatype – MPI datatype.

8 mpi4py.run

New in version 3.0.0.

At import time, mpi4py initializes the MPI execution environment calling MPI_Init_thread() and installs an exit
hook to automatically call MPI_Finalize() just before the Python process terminates. Additionally, mpi4py over-
rides the default ERRORS_ARE_FATAL error handler in favor of ERRORS_RETURN, which allows translating MPI errors
in Python exceptions. These departures from standard MPI behavior may be controversial, but are quite convenient
within the highly dynamic Python programming environment. Third-party code using mpi4py can just from mpi4py
import MPI and perform MPI calls without the tedious initialization/finalization handling. MPI errors, once trans-
lated automatically to Python exceptions, can be dealt with the common try. . .except. . .finally clauses; unhandled
MPI exceptions will print a traceback which helps in locating problems in source code.

Unfortunately, the interplay of automatic MPI finalization and unhandled exceptions may lead to deadlocks. In unat-
tended runs, these deadlocks will drain the battery of your laptop, or burn precious allocation hours in your supercom-
puting facility.

Consider the following snippet of Python code. Assume this code is stored in a standard Python script file and run with
mpiexec in two or more processes.

from mpi4py import MPI
assert MPI.COMM_WORLD.Get_size() > 1
rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:

1/0
MPI.COMM_WORLD.send(None, dest=1, tag=42)

elif rank == 1:
MPI.COMM_WORLD.recv(source=0, tag=42)

49

Process 0 raises ZeroDivisionError exception before performing a send call to process 1. As the exception is not
handled, the Python interpreter running in process 0 will proceed to exit with non-zero status. However, as mpi4py
installed a finalizer hook to call MPI_Finalize() before exit, process 0 will block waiting for other processes to also
enter the MPI_Finalize() call. Meanwhile, process 1 will block waiting for a message to arrive from process 0, thus
never reaching to MPI_Finalize(). The whole MPI execution environment is irremediably in a deadlock state.

To alleviate this issue, mpi4py offers a simple, alternative command line execution mechanism based on using the -m
flag and implemented with the runpy module. To use this features, Python code should be run passing -m mpi4py
in the command line invoking the Python interpreter. In case of unhandled exceptions, the finalizer hook will call
MPI_Abort() on the MPI_COMM_WORLD communicator, thus effectively aborting the MPI execution environment.

Warning: When a process is forced to abort, resources (e.g. open files) are not cleaned-up and any registered
finalizers (either with the atexitmodule, the Python C/API function Py_AtExit(), or even the C standard library
function atexit()) will not be executed. Thus, aborting execution is an extremely impolite way of ensuring process
termination. However, MPI provides no other mechanism to recover from a deadlock state.

8.1 Interface options

The use of -m mpi4py to execute Python code on the command line resembles that of the Python interpreter.

• mpiexec -n numprocs python -m mpi4py pyfile [arg] ...

• mpiexec -n numprocs python -m mpi4py -m mod [arg] ...

• mpiexec -n numprocs python -m mpi4py -c cmd [arg] ...

• mpiexec -n numprocs python -m mpi4py - [arg] ...

<pyfile>

Execute the Python code contained in pyfile, which must be a filesystem path referring to either a Python file, a
directory containing a __main__.py file, or a zipfile containing a __main__.py file.

-m <mod>

Search sys.path for the named module mod and execute its contents.

-c <cmd>

Execute the Python code in the cmd string command.

-

Read commands from standard input (sys.stdin).

See also:

python:using-on-cmdline
Documentation on Python command line interface.

50

9 Reference

mpi4py.MPI

9.1 mpi4py.MPI

mpi4py.MPI

10 Citation

If MPI for Python been significant to a project that leads to an academic publication, please acknowledge that fact by
citing the project.

• L. Dalcin and Y.-L. L. Fang, mpi4py: Status Update After 12 Years of Development, Computing in Science &
Engineering, 23(4):47-54, 2021. https://doi.org/10.1109/MCSE.2021.3083216

• L. Dalcin, P. Kler, R. Paz, and A. Cosimo, Parallel Distributed Computing using Python, Advances in Water
Resources, 34(9):1124-1139, 2011. https://doi.org/10.1016/j.advwatres.2011.04.013

• L. Dalcin, R. Paz, M. Storti, and J. D’Elia, MPI for Python: performance improvements and MPI-2 extensions,
Journal of Parallel and Distributed Computing, 68(5):655-662, 2008. https://doi.org/10.1016/j.jpdc.2007.09.005

• L. Dalcin, R. Paz, and M. Storti, MPI for Python, Journal of Parallel and Distributed Computing, 65(9):1108-
1115, 2005. https://doi.org/10.1016/j.jpdc.2005.03.010

11 Installation

11.1 Requirements

You need to have the following software properly installed in order to build MPI for Python:

• A working MPI implementation, preferably supporting MPI-3 and built with shared/dynamic libraries.

Note: If you want to build some MPI implementation from sources, check the instructions at Building MPI from
sources in the appendix.

• Python 2.7, 3.5 or above.

Note: Some MPI-1 implementations do require the actual command line arguments to be passed in
MPI_Init(). In this case, you will need to use a rebuilt, MPI-enabled, Python interpreter executable. MPI
for Python has some support for alleviating you from this task. Check the instructions at MPI-enabled Python
interpreter in the appendix.

51

https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2005.03.010

11.2 Using pip

If you already have a working MPI (either if you installed it from sources or by using a pre-built package from your
favourite GNU/Linux distribution) and the mpicc compiler wrapper is on your search path, you can use pip:

$ python -m pip install mpi4py

Note: If the mpicc compiler wrapper is not on your search path (or if it has a different name) you can use env to pass
the environment variable MPICC providing the full path to the MPI compiler wrapper executable:

$ env MPICC=/path/to/mpicc python -m pip install mpi4py

Warning: pip keeps previouly built wheel files on its cache for future reuse. If you want to reinstall the mpi4py
package using a different or updated MPI implementation, you have to either first remove the cached wheel file
with:
$ python -m pip cache remove mpi4py

or ask pip to disable the cache:

$ python -m pip install --no-cache-dir mpi4py

11.3 Using distutils

The MPI for Python package is available for download at the project website generously hosted by GitHub. You can
use curl or wget to get a release tarball.

• Using curl:

$ curl -O https://github.com/mpi4py/mpi4py/releases/download/X.Y.Z/mpi4py-X.Y.Z.tar.
→˓gz

• Using wget:

$ wget https://github.com/mpi4py/mpi4py/releases/download/X.Y.Z/mpi4py-X.Y.Z.tar.gz

After unpacking the release tarball:

$ tar -zxf mpi4py-X.Y.Z.tar.gz
$ cd mpi4py-X.Y.Z

the package is ready for building.

MPI for Python uses a standard distutils-based build system. However, some distutils commands (like build) have
additional options:

--mpicc=

Lets you specify a special location or name for the mpicc compiler wrapper.

--mpi=

Lets you pass a section with MPI configuration within a special configuration file.

52

--configure

Runs exhaustive tests for checking about missing MPI types, constants, and functions. This option should be
passed in order to build MPI for Python against old MPI-1 or MPI-2 implementations, possibly providing a
subset of MPI-3.

If you use a MPI implementation providing a mpicc compiler wrapper (e.g., MPICH, Open MPI), it will be used for
compilation and linking. This is the preferred and easiest way of building MPI for Python.

If mpicc is located somewhere in your search path, simply run the build command:

$ python setup.py build

If mpicc is not in your search path or the compiler wrapper has a different name, you can run the build command
specifying its location:

$ python setup.py build --mpicc=/where/you/have/mpicc

Alternatively, you can provide all the relevant information about your MPI implementation by editing the file called
mpi.cfg. You can use the default section [mpi] or add a new, custom section, for example [other_mpi] (see the
examples provided in the mpi.cfg file as a starting point to write your own section):

[mpi]

include_dirs = /usr/local/mpi/include
libraries = mpi
library_dirs = /usr/local/mpi/lib
runtime_library_dirs = /usr/local/mpi/lib

[other_mpi]

include_dirs = /opt/mpi/include ...
libraries = mpi ...
library_dirs = /opt/mpi/lib ...
runtime_library_dirs = /op/mpi/lib ...

...

and then run the build command, perhaps specifying you custom configuration section:

$ python setup.py build --mpi=other_mpi

After building, the package is ready for install.

If you have root privileges (either by log-in as the root user of by using sudo) and you want to install MPI for Python
in your system for all users, just do:

$ python setup.py install

The previous steps will install the mpi4py package at standard location prefix/lib/pythonX.X/site-packages.

If you do not have root privileges or you want to install MPI for Python for your private use, just do:

$ python setup.py install --user

53

11.4 Testing

To quickly test the installation:

$ mpiexec -n 5 python -m mpi4py.bench helloworld
Hello, World! I am process 0 of 5 on localhost.
Hello, World! I am process 1 of 5 on localhost.
Hello, World! I am process 2 of 5 on localhost.
Hello, World! I am process 3 of 5 on localhost.
Hello, World! I am process 4 of 5 on localhost.

If you installed from source, issuing at the command line:

$ mpiexec -n 5 python demo/helloworld.py

or (in the case of ancient MPI-1 implementations):

$ mpirun -np 5 python `pwd`/demo/helloworld.py

will launch a five-process run of the Python interpreter and run the test script demo/helloworld.py from the source
distribution.

You can also run all the unittest scripts:

$ mpiexec -n 5 python test/runtests.py

or, if you have nose unit testing framework installed:

$ mpiexec -n 5 nosetests -w test

or, if you have py.test unit testing framework installed:

$ mpiexec -n 5 py.test test/

12 Appendix

12.1 MPI-enabled Python interpreter

Warning: These days it is no longer required to use the MPI-enabled Python interpreter in most cases,
and, therefore, it is not built by default anymore because it is too difficult to reliably build a Python
interpreter across different distributions. If you know that you still really need it, see below on how to
use the build_exe and install_exe commands.

Some MPI-1 implementations (notably, MPICH 1) do require the actual command line arguments to be passed at
the time MPI_Init() is called. In this case, you will need to use a re-built, MPI-enabled, Python interpreter binary
executable. A basic implementation (targeting Python 2.X) of what is required is shown below:

#include <Python.h>
#include <mpi.h>

int main(int argc, char *argv[])
(continues on next page)

54

https://nose.readthedocs.io/
https://docs.pytest.org/

(continued from previous page)

{
int status, flag;
MPI_Init(&argc, &argv);
status = Py_Main(argc, argv);
MPI_Finalized(&flag);
if (!flag) MPI_Finalize();
return status;

}

The source code above is straightforward; compiling it should also be. However, the linking step is more tricky: special
flags have to be passed to the linker depending on your platform. In order to alleviate you for such low-level details,
MPI for Python provides some pure-distutils based support to build and install an MPI-enabled Python interpreter
executable:

$ cd mpi4py-X.X.X
$ python setup.py build_exe [--mpi=<name>|--mpicc=/path/to/mpicc]
$ [sudo] python setup.py install_exe [--install-dir=$HOME/bin]

After the above steps you should have the MPI-enabled interpreter installed as prefix/bin/pythonX.X-mpi (or
$HOME/bin/pythonX.X-mpi). Assuming that prefix/bin (or $HOME/bin) is listed on your PATH, you should be
able to enter your MPI-enabled Python interactively, for example:

$ python2.7-mpi
Python 2.7.8 (default, Nov 10 2014, 08:19:18)
[GCC 4.9.2 20141101 (Red Hat 4.9.2-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.executable
'/usr/bin/python2.7-mpi'
>>>

12.2 Building MPI from sources

In the list below you have some executive instructions for building some of the open-source MPI implementations out
there with support for shared/dynamic libraries on POSIX environments.

• MPICH

$ tar -zxf mpich-X.X.X.tar.gz
$ cd mpich-X.X.X
$./configure --enable-shared --prefix=/usr/local/mpich
$ make
$ make install

• Open MPI

$ tar -zxf openmpi-X.X.X tar.gz
$ cd openmpi-X.X.X
$./configure --prefix=/usr/local/openmpi
$ make all
$ make install

• MPICH 1

55

$ tar -zxf mpich-X.X.X.tar.gz
$ cd mpich-X.X.X
$./configure --enable-sharedlib --prefix=/usr/local/mpich1
$ make
$ make install

Perhaps you will need to set the LD_LIBRARY_PATH environment variable (using export, setenv or what applies to
your system) pointing to the directory containing the MPI libraries . In case of getting runtime linking errors when
running MPI programs, the following lines can be added to the user login shell script (.profile, .bashrc, etc.).

• MPICH

MPI_DIR=/usr/local/mpich
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH

• Open MPI

MPI_DIR=/usr/local/openmpi
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH

• MPICH 1

MPI_DIR=/usr/local/mpich1
export LD_LIBRARY_PATH=$MPI_DIR/lib/shared:$LD_LIBRARY_PATH:
export MPICH_USE_SHLIB=yes

Warning: MPICH 1 support for dynamic libraries is not completely transparent. Users should set the envi-
ronment variable MPICH_USE_SHLIB to yes in order to avoid link problems when using the mpicc compiler
wrapper.

References

[mpi-std1] MPI Forum. MPI: A Message Passing Interface Standard. International Journal of Supercomputer Appli-
cations, volume 8, number 3-4, pages 159-416, 1994.

[mpi-std2] MPI Forum. MPI: A Message Passing Interface Standard. High Performance Computing Applications,
volume 12, number 1-2, pages 1-299, 1998.

[mpi-using] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel programming with the
message-passing interface. MIT Press, 1994.

[mpi-ref] Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI - The Complete
Reference, volume 1, The MPI Core. MIT Press, 2nd. edition, 1998.

[mpi-mpich] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPI
message passing interface standard. Parallel Computing, 22(6):789-828, September 1996.

[mpi-openmpi] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David
J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004.

56

[Hinsen97] Konrad Hinsen. The Molecular Modelling Toolkit: a case study of a large scientific application in Python.
In Proceedings of the 6th International Python Conference, pages 29-35, San Jose, Ca., October 1997.

[Beazley97] David M. Beazley and Peter S. Lomdahl. Feeding a large-scale physics application to Python. In Proceed-
ings of the 6th International Python Conference, pages 21-29, San Jose, Ca., October 1997.

57

Python Module Index
m
mpi4py, 20
mpi4py.futures, 40
mpi4py.run, 49
mpi4py.util, 46
mpi4py.util.dtlib, 49
mpi4py.util.pkl5, 46

58

Index

Symbols
--configure

command line option, 52
--mpi

command line option, 52
--mpicc

command line option, 52
-c

command line option, 50
-m

command line option, 50

B
bcast() (mpi4py.util.pkl5.Comm method), 48
bootup() (mpi4py.futures.MPIPoolExecutor method), 42
bsend() (mpi4py.util.pkl5.Comm method), 47

C
cancel() (mpi4py.util.pkl5.Request method), 47
Comm (class in mpi4py.util.pkl5), 47
command line option

--configure, 52
--mpi, 52
--mpicc, 52
-c, 50
-m, 50

E
environment variable
LD_LIBRARY_PATH, 56
MPI4PY_FUTURES_MAX_WORKERS, 41, 42, 46
MPI4PY_PICKLE_PROTOCOL, 11, 24
MPI4PY_PICKLE_THRESHOLD, 24
MPI4PY_RC_ERRORS, 21, 23
MPI4PY_RC_FAST_REDUCE, 21, 23
MPI4PY_RC_FINALIZE, 21, 22
MPI4PY_RC_INITIALIZE, 20, 22
MPI4PY_RC_RECV_MPROBE, 21, 23
MPI4PY_RC_THREAD_LEVEL, 21, 23
MPI4PY_RC_THREADS, 20, 22
MPICC, 52
MPICH_USE_SHLIB, 56
MPIEXEC_UNIVERSE_SIZE, 45
PATH, 55

errors (mpi4py.mpi4py.rc attribute), 21

F
fast_reduce (mpi4py.mpi4py.rc attribute), 21
finalize (mpi4py.mpi4py.rc attribute), 21
Free() (mpi4py.util.pkl5.Request method), 46

from_numpy_dtype() (in module mpi4py.util.dtlib), 49

G
get_config() (in module mpi4py), 24
get_include() (in module mpi4py), 24
get_status() (mpi4py.util.pkl5.Request method), 47
GIL, 46

I
ibsend() (mpi4py.util.pkl5.Comm method), 47
improbe() (mpi4py.util.pkl5.Comm method), 48
initialize (mpi4py.mpi4py.rc attribute), 20
Intercomm (class in mpi4py.util.pkl5), 48
Intracomm (class in mpi4py.util.pkl5), 48
iprobe() (mpi4py.util.pkl5.Message method), 47
irecv() (mpi4py.util.pkl5.Comm method), 47
irecv() (mpi4py.util.pkl5.Message method), 47
isend() (mpi4py.util.pkl5.Comm method), 47
issend() (mpi4py.util.pkl5.Comm method), 47

L
LD_LIBRARY_PATH, 56

M
map() (mpi4py.futures.MPIPoolExecutor method), 41
Message (class in mpi4py.util.pkl5), 47
module
mpi4py, 20
mpi4py.futures, 40
mpi4py.run, 49
mpi4py.util, 46
mpi4py.util.dtlib, 49
mpi4py.util.pkl5, 46

MPI (in module mpi4py), 51
mpi4py
module, 20

mpi4py.futures
module, 40

mpi4py.rc (in module mpi4py), 20
mpi4py.run
module, 49

mpi4py.util
module, 46

mpi4py.util.dtlib
module, 49

mpi4py.util.pkl5
module, 46

MPI4PY_FUTURES_MAX_WORKERS, 41, 42, 46
MPI4PY_PICKLE_PROTOCOL, 11
MPI4PY_RC_ERRORS, 21

59

MPI4PY_RC_FAST_REDUCE, 21
MPI4PY_RC_FINALIZE, 21
MPI4PY_RC_INITIALIZE, 20
MPI4PY_RC_RECV_MPROBE, 21
MPI4PY_RC_THREAD_LEVEL, 21
MPI4PY_RC_THREADS, 20
MPICC, 52
MPICH_USE_SHLIB, 56
MPICommExecutor (class in mpi4py.futures), 43
MPIEXEC_UNIVERSE_SIZE, 45
MPIPoolExecutor (class in mpi4py.futures), 40
mprobe() (mpi4py.util.pkl5.Comm method), 47

P
PATH, 55
probe() (mpi4py.util.pkl5.Message method), 47
profile() (in module mpi4py), 24
Python Enhancement Proposals
PEP 574, 46

R
recv() (mpi4py.util.pkl5.Comm method), 47
recv() (mpi4py.util.pkl5.Message method), 47
recv_mprobe (mpi4py.mpi4py.rc attribute), 21
Request (class in mpi4py.util.pkl5), 46

S
send() (mpi4py.util.pkl5.Comm method), 47
sendrecv() (mpi4py.util.pkl5.Comm method), 47
shutdown() (mpi4py.futures.MPIPoolExecutor method),

42
ssend() (mpi4py.util.pkl5.Comm method), 47
starmap() (mpi4py.futures.MPIPoolExecutor method),

42
submit() (mpi4py.futures.MPIPoolExecutor method), 41

T
test() (mpi4py.util.pkl5.Request method), 47
testall() (mpi4py.util.pkl5.Request method), 47
thread_level (mpi4py.mpi4py.rc attribute), 20
threads (mpi4py.mpi4py.rc attribute), 20
to_numpy_dtype() (in module mpi4py.util.dtlib), 49

W
wait() (mpi4py.util.pkl5.Request method), 47
waitall() (mpi4py.util.pkl5.Request method), 47

60

	Introduction
	What is MPI?
	What is Python?
	Related Projects

	Overview
	Communicating Python Objects and Array Data
	Communicators
	Point-to-Point Communications
	Blocking Communications
	Nonblocking Communications
	Persistent Communications

	Collective Communications
	Support for GPU-aware MPI
	Dynamic Process Management
	One-Sided Communications
	Parallel Input/Output
	Environmental Management
	Initialization and Exit
	Implementation Information
	Timers
	Error Handling

	Tutorial
	Running Python scripts with MPI
	Point-to-Point Communication
	Collective Communication
	MPI-IO
	Dynamic Process Management
	CUDA-aware MPI + Python GPU arrays
	One-Sided Communications
	Wrapping with SWIG
	Wrapping with F2Py

	mpi4py
	Runtime configuration options
	Environment variables
	Miscellaneous functions

	mpi4py.MPI
	Classes
	Functions
	Attributes

	mpi4py.futures
	concurrent.futures
	MPIPoolExecutor
	MPICommExecutor
	Command line
	Examples

	mpi4py.util
	mpi4py.util.pkl5
	Examples

	mpi4py.util.dtlib

	mpi4py.run
	Interface options

	Reference
	mpi4py.MPI

	Citation
	Installation
	Requirements
	Using pip
	Using distutils
	Testing

	Appendix
	MPI-enabled Python interpreter
	Building MPI from sources

	References
	Python Module Index
	Index

